

Introduction to Mathematical Quantum Theory

Text of the Exercises

– 12.05.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $\mathcal{H} := L^2(\mathbb{R})$ and $P := -i\partial_x$ the momentum operator defined on the domain $\mathcal{D}(P) := H^1(\mathbb{R})$ as $P\psi(x) = -i\frac{\partial\psi}{\partial x}(x)$. Consider for any $\lambda \in \mathbb{R}$ the bounded operator T_λ defined for any $\psi \in \mathcal{H}$ as $T_\lambda\psi(x) = \psi(x - \lambda)$.

Prove that $\{T_\lambda\}_{\lambda \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group and that

$$T_\lambda = e^{i\lambda P} = e^{\lambda\partial_x}. \quad (1)$$

Exercise 2

Let \mathcal{H} be an Hilbert space, A a symmetric operator and $\mu > 0$ a positive real number. Prove that the following are equivalent.

- a** A is self-adjoint.
- b** $\text{Ran}(A + i\mu \text{id}) = \text{Ran}(A - i\mu \text{id}) = \mathcal{H}$.

Exercise 3

Let \mathcal{H} be an Hilbert space. Let $U \in \mathcal{B}(\mathcal{H})$. Prove that U is unitary if and only if there exist a self-adjoint operator A on \mathcal{H} such that $U = e^{iA}$.

Exercise 4

Let \mathcal{H} be an Hilbert space and $A_+, A_- \in \mathcal{B}(\mathcal{H})$ such that

$$[A_\pm, A_\pm^*] = \text{id}, \quad (2)$$

$$[A_+, A_-] = [A_+, A_-^*] = 0. \quad (3)$$

Let moreover $\eta, \zeta \in \mathbb{R}$, with $\eta > \zeta \geq 0$. Define

$$H := \eta(A_+^* A_+ + A_-^* A_-) + \zeta(A_+^* A_-^* + A_+ A_-). \quad (4)$$

- a** Prove that H is self-adjoint.

b Prove that there exist operators C_{\pm} and numbers $\alpha, \beta \in \mathbb{R}$ such that

$$[C_{\pm}, C_{\pm}^*] = \text{id}, \quad (5)$$

$$[C_+, C_-] = [C_+, C_-^*] = 0, \quad (6)$$

$$H = \alpha (C_+^* C_+ + C_-^* C_-) + \beta. \quad (7)$$

Hint: Define

$$C_{\pm} := \gamma_{\pm} A_{\pm} + \xi_{\pm} A_{\mp}^* \quad (8)$$

for some $\gamma_{\pm}, \xi_{\pm} \in \mathbb{R}$. Use (5) and (6) to deduce that $\gamma_+ = \gamma_-$, $\xi_+ = \xi_-$ and that $\gamma_{\pm}^2 - \xi_{\pm}^2 = 1$. Calculate $C_{\pm}^ C_{\pm}$ and deduce (7).*